Tính chất quan trọng Hàm sinh mô men

Hàm sinh mô men là dương và lồi logarit, với M(0) = 1.

Một tính chất quan trọng của hàm sinh mô men đó là nó xác định duy nhất phân phối xác suất. Nói cách khác, nếu X {\displaystyle X} và Y {\displaystyle Y} là hai biến ngẫu nhiên và với mọi giá trị của t, ta có

M X ( t ) = M Y ( t ) , {\displaystyle M_{X}(t)=M_{Y}(t),\,}

thì

F X ( x ) = F Y ( x ) {\displaystyle F_{X}(x)=F_{Y}(x)\,}

đối với mọi giá trị của x (hay một cách tương đương là X và Y có cùng phân phối xác suất). Tuy nhiên, phát biểu này không tương đuơng với phát biểu "nếu hai phân phối có các mô men giống nhau thì chúng bằng nhau tại mọi điểm." Điều này là do trong một số trường hợp, các mô men tồn tại nhưng hàm sinh mô men thì không, bởi vì giới hạn

lim n → ∞ ∑ i = 0 n t i m i i ! {\displaystyle \lim _{n\rightarrow \infty }\sum _{i=0}^{n}{\frac {t^{i}m_{i}}{i!}}}

có thể không tồn tại. Phân phối log-chuẩn là một ví dụ về khi điều này xảy ra.

Tính toán các mô men

Hàm sinh mô men có tên gọi như vậy bởi vì nếu nó tồn tại trên một khoảng mở quanh t = 0, thì nó là hàm sinh lũy thừa của các mô men của phân phối xác suất:

m n = E ( X n ) = M X ( n ) ( 0 ) = d n M X d t n | t = 0 . {\displaystyle m_{n}=E\left(X^{n}\right)=M_{X}^{(n)}(0)=\left.{\frac {d^{n}M_{X}}{dt^{n}}}\right|_{t=0}.}

Điều này tức là, với n là một số nguyên không âm, mô men gốc cấp thứ n (tại điểm 0) chính là đạo hàm cấp n của hàm sinh mô men, tính ở điểm t = 0.